EFFICACY STUDY OF CELON PHARMA FGFR KINASE INHIBITOR IN TWO PATIENT-DERIVED TUMOUR XENOGRAFT (PDTX) MODELS
Joanna Hucz-Kalitowska¹, Małgorzata Teska-Kamińska, Aleksandra Stanczak, Monika Skupińska, Agata Mikolajczyk, Jerzy Pieczykolan, Maciej Wieczorek

¹Department of Preclinical Research, Celon Pharma S.A., Lomianki/Poland
*corresponding author: joanna.hucz@celonpharma.com

INTRODUCTION
A number of malignancies are associated with altered fibroblast growth factor receptor (FGFR) signaling resulting from mutation, amplification or overexpression of the FGFR genes. Solid tumors with amplification of FGFR2 was shown in less than 10% of gastric cancers and 20% of non-small cell lung (NSCLC) cancers (1-3). The Celon Pharma lead compound, named CPL-304-110, is a potent and selective inhibitor of FGFR1-3 kinases. Here, we tested this inhibitor in two of Patient-Derived Tumor Xenograft (PDTX) models with amplification of FGFR2. Use of PDTX models yields more reliable results than cell xenografts models during in vivo preclinical evaluation, because this kind of tumors better reflect neoplasms developed in patients, both in histological and molecular characteristic.

The aim of this study was to determine the antitumor effect of CPL-304-110 in two PDTX models with FGFR2 amplification.

MATERIALS AND METHODS

PDTX Models
Two PDTX models derived and proprietary to Crow Biosciences, Inc., were chosen: LU6429, a non-small cell lung cancer (NSCLC) and GA1224, a gastric cancer.

Table 1. Characteristic of PDTX models

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Tumor type</th>
<th>Sensitivity</th>
<th>FGFR amplification</th>
<th>Pathology diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA1224</td>
<td>Gastric cancer, NSCLC</td>
<td>sensitive</td>
<td>FGFR signal amplification</td>
<td>75% of male as smoker (50%), squamous cell carcinoma</td>
</tr>
<tr>
<td>LU6429</td>
<td>Gastric cancer, adenocarcinoma</td>
<td>sensitive</td>
<td>FGFR signal amplification</td>
<td>76% of male, poorly differentiated adenocarcinoma of gastric cardia with hepatic metasisons</td>
</tr>
</tbody>
</table>

Tumor inoculation

A mixture of fresh surgical primary human tumor samples were implanted subcutaneously in both flanks of 1 to 2 immunocompromised female MF-1 nude (LU6429 model) or BALB/c nude (GA1224) mice. When tumors reached the exponential phase tumor size were measured from donor mice, reduced into small fragments, and serially transplanted subcutaneously in new recipient mice for tumor development.

Study design

When average tumor size reached approximately 100-150mm³, mice were randomised into 4 groups for LU6429 model and 4 groups for GA1224. Each group contained 10 mice. The day of grouping was denoted as day 0. Dosage was started on day 1. Mice were dosed orally, twice daily, at an interval of 12 hours, for three weeks with vehicle placebo (2%NMP/33%PEG300/65%H2O) or CPL-304-110 at three dose levels: 30, 40 and 50mg/kg.

Table 2. Group Assignment and Treatment Plan of each PDTX model

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Compound</th>
<th>Dose Level (mg/kg)</th>
<th>Dosage Route</th>
<th>Dosing Volume (mg)</th>
<th>Dosing Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Vehicle- placebo</td>
<td>p.o.</td>
<td>10</td>
<td>0.01</td>
<td>B.D*21</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>300-110</td>
<td>p.o.</td>
<td>10</td>
<td>0.1</td>
<td>B.D*21</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>400-110</td>
<td>p.o.</td>
<td>10</td>
<td>0.1</td>
<td>B.D*21</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>500-110</td>
<td>p.o.</td>
<td>10</td>
<td>0.1</td>
<td>B.D*21</td>
</tr>
</tbody>
</table>

Observation

The body weights of the mice were monitored daily. Tumor size was measured three times weekly after randomization. The tumor volumes were expressed in mm³ using the formula: T = 0.5 × a × b², where a and b are the long and short diameters of the tumor, respectively. Tumor volumes (T) and percentage tumor growth inhibition (%TGI) were used for the evaluation of antitumor efficacy. After finishing dosing, mice were observed for one additional week.

RESULTS

GA1224 and LU6429 in vivo response to CPL-304-110

GA1224 model - significant reduction in tumor growth resulting in stabilization of tumor growth was seen following treatment with all three doses of CPL-304-110. During the treatment phase, tumor regression was observed in all treatment groups. There was statistically significant inhibitory effect of treatment on tumor growth for CPL-304-110 at all three doses when compared with the vehicle group (two-way ANOVA, p value < 0.001). During the 7-day treatment free observation period, no tumor regrowth was observed in all treatment groups.

LU6429 model - during the treatment phase, there was statistically significant inhibitory effect of treatment on tumor growth for CPL-304-110 when compared with the vehicle group (two-way ANOVA, p value < 0.001) in LU6429 model. During the 7-day treatment free observation period, tumor regrowth was observed in all treatment groups in a dose-dependent manner. Two animals in Group 1 on day 13 with oversized tumors were humanely euthanized prior to termination day of vehicle group.

Antitumor activity of CPL-304-110 in PDTX models with FGFR2 amplification

To evaluate antitumor activity, tumor growth inhibition (TGI) was calculated according with formula:

\[TGI = \left(1 - \frac{TV}{CTI \times CI}\right) \times 100\% \]

where Ti and Ci are the mean tumor volumes of the treatment and control groups as the measurement day; 70 and 30 is the mean tumor volumes of the treatment and control groups on day 0. Celon’s CPL-304-110 exhibited stronger tumor suppressive activity in gastric cancer PDTX model, compared to lung cancer PDTX with FGFR2 amplification.

SUMMARY
A statistically significant effect in tumor growth over the course of the study was observed with CPL-304-110 treatment at all doses when compared with vehicle control in both models. During the treatment free period, tumor regrowth was observed in LU6429 in a dose dependent manner whereas no regrowth was observed for any of the treatment groups in GA1224 model.

CONCLUSIONS
Oral administration of FGFR kinase inhibitor CPL-304-110 resulted in strong antitumor efficacy in both FGFR2-dependent xenograft models. The activity of CPL-304-110 in PDTX models justifies it for the consideration as a drug in clinical use for cancer patients with lung and gastric FGFR2 amplification.

REFERENCES

The research was carried out by Crow Biosciences Inc. and was financed by the National Center of Research and Development and pharmaceutical company Celon Pharma S.A. (project “CCELON”/ gene number: PBS.01.03.01/0023/2010/2/15/NCBR/2015).