Development of SR matrix tablet containing a new GPR40 agonist for first-in-human clinical trial

Ewelina Juszczyk1, Kamil Kisto1, Paweł Zero1, Ewa Tratkiewicz1, Jadwiga Paszkowska2, Dorota Danielak4, Jaroslaw Szcdrok3, Grzegorz Garbacz2,3

1 Celen Pharma S.A., Główna 48, 05-152 Kazuń Nowy, Poland, ewelina.juszczyk@celonpharma.com
2 Physiolution GmbH, Walther-Rathenau-Str. 49 a, 17469 Greifswald, Germany
3 Physiolution Polska Sp. z o.o., Piekarskiego 74, 50-020 Wrocław, Poland
4 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań

Purpose

We present development of MR tablets with a new antidiabetic agent GPR40 agonist for first-in-human administration in phase I clinical trial. The aim was to develop MR tablets containing 5, 30 or 120 mg of the drug that are resistant to the GI passage conditions in either fasted or fed states and assure same drug delivery kinetics regardless the dose labelled. The tablets should bear no risk of dose dumping and provide stable drug release over 14-18 hours. The aim of the formulation development was to minimize the risk and extend the duration of the therapeutic drug plasma levels.

Results

Excipts selection step

First stage of SR tablets development was to evaluate the performance of prototype formulations. During this step key factors influencing drug release were identified. First of all, the excipients compatible with the drug substance were selected and divided into two groups: matrix forming agents and filling agents. The former assured sustained release of a new API; the latter served as fillers responsible for appropriate tablet compression. Exemplary dissolution profiles of tested formulations are presented in Fig. 2.

Drug release in stress test device

Selected prototype formulations of best in vitro behavior were then analyzed in stress test device that allow simulation of fasted and fed conditions designed in clinical study protocol. All planned tablet strengths were expected to be independent of tablet strength administered to the patient. For this reason a common dissolution profile for all tablet strengths were aimed both in fasted and fed state. The performance of dosage forms was evaluated in stress test device. Based on the results, relevant compositions that ensures similar dissolution behavior for three tablet strengths were selected for clinical study. Despite big differences in tablet strengths and thus, with differing pH changes, mechanical stress), which makes it relevant to use regardless dosing conditions designed in clinical study protocol. All planned tablet strengths were expected to release a studied API with similar dissolution rate. It should result in proper exposition of the drug to patients in the clinical trial as well as reduction of the potential risk related to FIH administration.

Materials and Methods

CPL207-280-51 – innovative BCS class 1 API was formulated as SR matrix tablets using common excipients of pharmaceutical grade. The labelled dose amounted to 5, 30 and 120 mg, respectively.

Manufacturing: the tablets of three tablet strengths (5, 30, and 120 mg) were prepared on single-punch tablet press from Korsch XP1 at two different compression forces of 17 and 22 kN.

Standard dissolution: tests were performed using USP II paddle apparatus in 900 mL of phosphate buffer pH = 6.8 at 75 rpm and 37°C.

Biopredictive dissolution test: estimation of the drug release under simulated fasted and fed conditions was performed using the bio-relevant dissolution stress test device developed by Physiolution GmbH (Fig. 1). The device mimics the mechanical and physicochemical conditions of the GI passage in form of bio-predictive test algorithms designed for simulation of fasted and fed intake conditions of clinical trials.

Analytics: samples were analyzed by HPLC with fluorescence and UV detection.

Conclusion

During the development of SR tablet containing new GPR40 agonist for FIH clinical trial a composition of determined properties was evolved. Based on stress test device results, weak points of the tested formulations were identified. The ones of undesired properties were rejected. The final formulation ensured drug release in desired time, in accordance to clinical requirements. The formulation was proved to be resistant to GI tract conditions [e.g. pH changes, mechanical stress], which makes it relevant to use regardless dosing conditions designed in clinical study protocol. All planned tablet strengths were expected to release a studied API with similar dissolution rate. It should result in proper exposition of the drug to patients in the clinical trial as well as reduction of the potential risk related to FIH administration.

Acknowledgments

The financial supports of Polish National Centre for Research and Development (POR.01.01.00-33/17-00, POR.01.02.00-00-0011/17-00) are kindly acknowledged. D. Danielak acknowledges the support of the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 778051, for travel and accommodation.

References