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Simple Summary: In recent years, many studies have shown the importance of TAM kinases in both
normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL,
MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic
roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in
the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic
targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We
analyse and compare different strategies of TAM inhibition, for a full perspective of current and
future battlefields in the war with cancer.

Abstract: Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors
and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play
an important role in signal transduction in both normal and malignant cells, and their encoding
genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3,
AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of
apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show
that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity.
MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an
immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-
mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual
target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and
their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss
the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and
compare current approaches to target TAM RTKs in solid tumours and the development of new
inhibitors for both extra- and intracellular domains of TAM receptor kinases.

Keywords: MERTK; AXL; TYRO3; TAM family; receptor tyrosine kinase; targeted therapy; cancer

1. Introduction

The TAM receptor family comprises three receptor tyrosine kinases (MERTK, AXL,
TYRO3) that play important roles in diverse biological processes in normal cells [1–4].
The tyrosine kinases MERTK, AXL, and TYRO3 share a typical RTK structure with an
extracellular domain (ECD) of two immunoglobulin-related domains (IgL), followed by two
fibronectin type III (FNIII), a transmembrane domain, and a tyrosine kinase domain (TKD)
on the cytoplasmic side of the membrane [5–7]. The human TAMs exhibit 31–36% identical
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(52–57% similar) amino acids (aa) within the extracellular region and the intracellular
domains share 54–59% aa identity (72–75% similarity) within the tyrosine kinase domain [6].

TAM receptors are activated upon binding their extracellular ligands with IgL domains,
subsequent receptor dimerisation, cross-autoactivation of TKD, and downstream signal
transduction [8,9]. The first natural ligands of TAM receptors, i.e., Growth Arrest-Specific 6
(GAS6) and Protein S (PROS1), were identified in 1995 and to date, they remain the best-
known ligands of the TAM family [7,10,11]. GAS6 and PROS1 require vitamin K-dependent
γ-carboxylation for maximal activation. The ligands have a distinct affinity for the different
TAM receptors: GAS6 binds all TAM receptors, with the highest affinity for AXL, while
protein S binds to MERTK and TYRO3. GAS6 and PROS1 can bind the phosphatidylserine
(PS), and TAMs become activated when PS is exposed on the apoptotic cells, aggregating
platelets, exosomes, or virus envelopes [1,12–14].

The activated TAM receptors stimulate many downstream signalling pathways, includ-
ing the phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin
(mTOR) PI3K-Akt-mTOR, the MAPK/ERK kinase (MEK) 1/2-extracellular signal-regulated
kinase (ERK) MEK-ERK, p38 MAPK, FAK (focal adhesion kinase), STAT (signal transducer
and activator of transcription), and NFκB (nuclear factor-κB), impacting cell proliferation,
migration, survival, and epithelial–mesenchymal transition (EMT) [15–20].

The TAM RTK are typically not mutated in cancer cells; however, their overexpression
has been reported in numerous solid tumours and hematologic malignancies, including
non-small cell lung cancer (NSCLC), glioblastoma, melanoma, prostate cancer, breast cancer,
acute myeloid leukaemia, and others [21–27]. The expression of AXL corresponds with a
metastatic propensity, invasiveness in vitro, and resistance to targeted therapies [28–31].
AXL and MERTK proteins have been increasingly implicated in drug resistance to both
conventional and targeted therapies [17,32–34]. Moreover, the association of EMT with
AXL kinase expression is well documented, and EMT in turn is highly correlated with drug
resistance [35–37]. A growing number of findings show the involvement of the activated
TAM kinases in cancer progression [15,21,24,35,38].

The immunoregulatory roles of MERTK RTK were demonstrated in single- or multiple
TAM knockout mice where a lack of these receptors resulted in the development of a severe
lymphoproliferative disorder along with autoimmunity [39]. The most-studied effects
of TAM knockout have been in the immune system, where signalling from the receptors
couples the clearance of cell debris with the negative regulation of the innate immune
system [40–42]. One of the striking features of TAM single, double, and triple knockout
mice were connected with autoimmunity and impaired apoptotic cell clearance. What is
worth mentioning is that the inhibition of more than one TAM family kinase resulted in a
more severe phenotype [39,43,44].

Both MERTK and AXL enhance the immunosuppressive nature of the tumour niche,
as they are expressed on macrophages, NK cells, and dendritic cells [45–48]. It has been
shown that the TAM receptors expressed in the tumour microenvironment play a role in
the phagocytosis of apoptotic cells, differentiation of NK cells, the function of T cells, and
the secretion of cytokines [24,46,49–51].

In recent years, TAM kinases have become an important therapeutic target in cancer
therapy (Figure 1). Due to the similarities in the structure of the three TAM receptors, it is
difficult to develop inhibitors specific to a single TAM RTK. Therefore, there are currently
three main strategies implemented to inhibit TAM receptor activity and signal transduction
in carcinogenesis: (1) inhibition of ligand–receptor complex formation; (2) decoy receptors
in a soluble form designed to form inactive TAM complexes; and (3) small-molecule tyrosine
kinase inhibitors (TKIs). In this review, we discuss how these strategies are applied to
battle carcinogenesis, how successful they are, and provide support for the further drug
development of TAM-targeting therapies.
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pounds; TKI, tyrosine kinase inhibitors; IgG-like domains, immunoglobulin-like domains; FNIII do-
mains, fibronectin type III domains; AA, amino acid; ECD, extracellular domain; KD, kinase do-
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Figure 1. Different strategies of inhibition of TAM receptor activity. Abbreviations: GAS6, Growth
arrest-specific 6 ligand; PROS1, Protein S; IgG, immunoglobulin G antibodies; scFv, single-chain vari-
able fragment antibodies; ADC, antibody–drug conjugates; LMW, low-molecular-weight compounds;
TKI, tyrosine kinase inhibitors; IgG-like domains, immunoglobulin-like domains; FNIII domains,
fibronectin type III domains; AA, amino acid; ECD, extracellular domain; KD, kinase domain.

2. TAM Family in Carcinogenesis

The classical activation of RTKs involves ligand binding to the extracellular domain
of the protein [52]. Subsequently, ligand binding causes receptor dimerisation and the
subsequent autophosphorylation of tyrosine residues within the cytoplasmic domain [53].
Recent studies demonstrated that each TAM receptor has a distinct pattern of activation
by GAS6 and PROS1, and their interactions may be affected by the presence of apoptotic
cells and PS-containing lipid vesicles [9]. Tsou et al. showed that the γ-carboxylation of
ligands was required for the full activation of TAMs and soluble immunoglobulin-like TAM
domains could act as specific ligand antagonists [9]. Although TYRO3, AXL, and MERTK
share sequence similarity, they have distinct functions in the immunoregulation and the
recognition/removal of apoptotic cells [9]. In two models of TAM-dependent homeostatic
phagocytosis, MERTK played a dominant role, while AXL was dispensable; the activation
of MERTK by PROS1 was sufficient to drive phagocytosis [54].
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Ligand binding induces receptor dimerisation and subsequent trans-autophosphorylation
of tyrosine residues within the cytoplasmic domain and activation of adaptor signalling
proteins, which results in the initiation of the signalling cascade and phosphorylation of
the downstream targets [55]. TAM family members share three conserved tyrosine residues
within the activation loop in the kinase domain. Those sites are required for proper kinase
enzymatic activity, and in the human, the conserved tyrosines are as follows: Tyr698, Tyr702,
Tyr703 in AXL, Tyr749, Tyr753, and Tyr754 in MERTK, and Tyr681, Tyr685, and Tyr686 in
TYRO3 [56,57]. Other phosphorylation sites of TAM proteins are positioned in the distal
part of the cytoplasmic domain: Tyr779, Tyr821, and Tyr866 in AXL, Tyr847, Tyr872, and
Tyr929 in MERTK, and Tyr762, Tyr804, and Tyr828 in TYRO3 [58,59].

In addition to ligand-dependent activation, the receptor-independent activation of
TAM kinases also occurs and encompasses receptor-independent homodimerisation or ag-
gregation of extracellular AXL domains on neighbouring cells [60–62]. Heterodimerisation
between TAM family proteins has also been reported [63–65]. Moreover, some researchers
have described heterodimerisation with non-TAM family receptors, such as EGFR or HER3,
which activates AXL-associated signalling [28,66].

Various factors regulate the activity and expression of TAM kinases at different lev-
els [67]. TAM kinases can be upregulated or downregulated at the transcriptional level,
among others, through the action of cytokines. Post-transcriptional regulation also occurs
via micro-RNAs, for example, miR-34a and miR-199a/b regulate AXL expression [68,69].
At the protein level, a metalloproteinase A disintegrin, and metalloprotease (ADAM)10
or ADAM17, may shed the extracellular domain of these proteins [70–72]. In addition,
soluble forms of TAM receptors can inhibit the activity of these kinases by acting as a
decoy receptor for ligands and preventing kinase stimulation by, for instance, GAS6 [73,74].
Although TAM family kinases are frequently overexpressed and activated in various types
of cancer, genetic changes within their encoding genes are rather rare. Due to impaired
phagocytosis, known relevant mutations in rodents and humans in MERTK genes could
lead to retinitis pigmentosa [75,76]. In cancer, mutations, fusions, or amplifications in the
TAM coding genes are not very common. However, the AXL aberrations have been identi-
fied in 3% or less of solid cancers (breast cancer, lung cancers, head, and neck cancer) and
acute myeloid leukaemia [77,78].

3. Extracellular Domain: An Approach from the Outside
3.1. Ligand Binding/Dimerisation Inhibition

GAS6 and PROS1 are vitamin K-dependent proteins and share ~44% similar structural
homology [79]. The general structure of GAS6 and PROS1 consists of a gamma-carboxy
glutamic acid (Gla) domain at the N-terminus, then four epidermal growth factor-like
(EGF-like) repeats, and at the C-terminus, a sex hormone-binding globulin (SHBG) domain
made of two laminin G-like (LG) domains [80,81]. The Gla domain in the presence of
vitamin K is γ-carboxylated and, in this form, recognises phosphatidylserine presented
on the surface of apoptotic cells, which next forms a bridge between TAM receptors and
an apoptotic cell [9]. The LG domains within the carboxy-terminal SHBG domains of the
ligands are recognised and bound by IgL domains in TAM ECD. Upon ligand binding, the
dimerisation of receptors occurs and is mediated by membrane-proximal fibronectin type
III (FNIII) domains [8].

Although GAS6 and PROS1 are quite structurally similar, the functional differences
and the distinct affinities of TAM receptors for these ligands are well established. GAS6
can bind to any of the TAM receptors, with the highest affinity for AXL, then TYRO3
and MERTK [9,54,82]. Interestingly, GAS6 has two binding sites reported—the major one
is recognised exclusively by the AXL protein, whereas the minor GAS6 binding site is
recognised by MERTK and TYRO3 [8]. This selectivity results from a β-sheet formation of
charged and neutral residues within the major binding site of GAS6 to opposite faces of the
newly formed β-sheet [8]. PROS1 presents a different binding profile, with a preference for
TYRO3 and MERTK over AXL [83–85]. GAS6 and PROS1 could also be recognised by TAMs



Cancers 2022, 14, 2488 5 of 22

in dimeric forms, as there are reports of the formation of heterodimers GAS6-PROS1 and
ligand multimerisation required for TAM receptor activation in certain scenarios [86,87].

A fine balance of ligand interaction with a tyrosine kinase receptor is necessary to
maintain normal tyrosine kinase function without causing overactivation, which could
result in human disease [88]. GAS6 is the most important ligand in anticancer therapy
targeting TAM receptors. It is expressed in many human tissues and different types of
cancers, and by binding to its three receptors (AXL, MERTK, TYRO3) plays a role in bi-
ological processes, i.e., proliferation, apoptosis, migration, and survival [89]. Notably,
GAS6 expression within solid and non-solid tumours often correlates with poor progno-
sis [90–93]. Interestingly, this protein also plays a role in the TME [47,94,95]. References to
overexpression of PROS1 in neoplasms are, so far, only single reports. PROS1 is known for
its involvement in coagulation processes due to the thrombin-sensitive region within its
structure, correlating with the blood coagulation cascade [96,97].

Antagonistic antibodies are a common strategy used to inhibit TAM signalling, due
to their high specificity and versatility in blocking receptor–ligand complex formation.
Monoclonal antibodies (mAbs) have been employed to stop not only simple ligand binding,
but also TAM downstream activity. The formation of the antibody–receptor complex
might also lead to the blockage of the receptor dimerisation, which may further result
in receptor destabilisation and subsequent degradation. An immunological aspect of
antibodies cannot be overlooked, as it may lead to the death of a cancer cell. Several mAbs
have been designed for ECD of AXL, with proven activity against TAM receptors in vitro
and in vivo. One, Tilvestamab, significantly inhibits AXL activation and tumour growth in
mice [98] and is currently being tested in clinical trials (NCT04893551). Other antibodies
did not reach this stage, but still present proven activity against TAM receptors in vitro and
in vivo. Antibodies YW327.6S2, MAb173, D9/E8, 20G7-D9, 3G9/8B5/12A11/4F8 mAbs,
and DAXL-88 block GAS6 binding to the receptors and reduce TAM transcription levels,
with prominent inhibition of tumour growth, cell migration, and invasion in several cancer
cell lines: SKOV3 (ovarian cancer), A549 (non-small cell lung cancer), and MDA-MB-231
(triple-negative breast cancer) [99–103]. Notably, there was an attempt to create a tetravalent
bispecific IgG-scFv antibody format, combining anti-AXL CDX-0168 and anti-PD-L1 mAb
(9H9) using an IgG-scFv format. In vitro results proved that this construct inhibited both
PD-L1 and AXL signalling, as well as improved cytokine release and T-cell activation [104].
CDX-0168/9H9 was not further investigated and did not move to the clinical stage.

The antibody hTyro3-IgG against TYRO3 has been reported to induce drug sensitivity
in primary colon cancer cell cultures and mouse xenografts [105]. RGX-019 humanised mon-
oclonal antibody promotes MERTK receptor internalisation. MERTK signalling pathway
inhibition reduced cancer cell viability and induced cytokine expression in the immune-
suppressive M2 macrophages. The RGX-019 antibody also showed a good profile in
toxicity studies, as it did not reveal retinal toxicity, a common undesirable effect of MERTK
inhibition [106].

Although only one of these antibodies reached the clinical stage of development,
antibody–drug conjugates (ADC) were more successful in this field and brought a definitive
cytotoxic effect to highly specific anti-AXL antibodies. Two different ADCs are currently
in clinical trials. Mecbotamab vedotin (CAB-AXL-ADC) is in the I/II clinical phase in
patients with advanced solid tumours in phase 1 and BA3011 alone, and with a PD-1
inhibitor in phase II (clinical trials NCT03425279 and NCT04681131). Enapotamab vedotin
(HuMax®-AXL-ADC) has shown some clinical activity in phase II for solid tumours, but
was discontinued in 2020, as the data gathered during the trials did not meet the desired
criteria (NCT02988817).

3.2. Receptor Cleavage and Decoy Receptors

RTKs in certain cellular conditions can be cleaved by ADAM10/17 to release the
kinase domain into the cytoplasm [70–72]. TAM’s proteolytic cleavage is increased by
lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), reactive oxygen species
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(ROS), and other environmental factors [71]. This mechanism can be exploited in cancer
treatment, as TAM ECD in the soluble form is rendered dysfunctional, therefore it cannot
transduce signal downstream; moreover, it may inhibit intact TAM receptor signalling by
interacting with TAM ligands to limit their accessibility.

Interestingly, while soluble forms of TYRO3 and AXL effectively blocked both PROS1
and GAS6 signalling, respectively, soluble MERTK showed weak inhibitory activities
against both ligands [9]. Still, the soluble form of MERTK (sMer) was reported to in-
hibit macrophage clearance of apoptotic cells and platelet aggregation [73], leading to the
inhibition of apoptotic neutrophil clearance [107].

Targeting the AXL receptor domain directly is the leading strategy in this field, with a
few engineered decoy receptors in development [108,109] and the most advanced Batirax-
cept (formerly AVB-500) in the lead. Batiraxcept inhibits GAS6/AXL signalling in vivo and
shows an 80-fold greater affinity to GAS6 than the natural receptor. Batiraxcept construct
carries four point mutations (Asp87Gly, Val92Ala, Gly32Ser, and Gly127Arg), allowing the
decoy receptor to trap the GAS6 ligand by both minor and major binding sites in a hetero-
bivalent manner [110]. Moreover, Batiraxcept demonstrated a favourable safety profile in
clinical trials and is now being tested for platinum-resistant ovarian cancer treatment in
combination with paclitaxel in a phase III clinical trial (NCT04729608).

3.3. Low-Molecular-Weight Compounds Targeting ECD of TAMs

An alternative approach to inhibit TAMs with small non-biological compounds was
also tested. RU-301 and RU-302 are low-molecular-weight (LMWs) compounds that bind
to Ig1 domains of TAM extracellular domains, blocking ligand binding. Both compounds
showed good inhibitory effects in low micromolar IC50s, with the activation of both TAMs
being inhibited in cultured cancer cells and tumour growth in lung cancer xenograft
models [111]. The inhibitory parameters might be lower than the tyrosine kinase inhibitors
described in the next chapter, but RU-301 showed much higher specificity against TAM
receptors. Kinase profiling revealed that RU-301 is much more specific and presents less
off-target activities than R428, a strong AXL TKI with 14 nM IC50 against AXL [111]. AXL
activity is also suppressed by a well-established anti-coagulant—warfarin. Low dosages of
warfarin prevent the progression and spread of pancreatic cancer [112]. In this scenario,
warfarin inhibits the activation of vitamin K by epoxide reductase complex 1 (VKORC1)
and, by proxy, blocks the activation of GAS6, which is a vitamin K-dependent protein [113].
Consequently, an induced apoptosis of cancer cells was observed, and reduced migration,
proliferation, and improved sensitivity to chemotherapy were revealed [112].

4. Kinase Domain: An Approach from the Inside
Tyrosine Kinase Inhibitors

The intracellular kinase domain of TAM receptors is considered a very promising
therapeutic target in cancer therapy. Kinase domains are very conservative in their struc-
ture, which allows the wide use of bioinformatic approaches in developing small-molecule
inhibitors. The intracellular domains of TAM receptors share 54–59% sequence iden-
tity and very high (72–75%) sequence similarity [6,114]. The homology is also repre-
sented in the overall structure of TAM kinase domains, with very similar topography and
global conformation.

Crystal structures of MERTK/AXL/TYRO3 kinase domains show that all share a
consensus KW(I/L)A(I/L)ES sequence; however, MERTK and AXL are structurally closer
to each other than to TYRO3 [115]. AXL and MERTK form very similar pockets in ATP-
binding sites, while the TYRO3 kinase domain has a bigger pocket that accommodates
larger molecules [115]. Crucial amino acids for ATP binding have been identified in MERTK
and are conserved within TYRO3 and AXL. These crucial residues are as follows: Leu593,
Gly594, Val601, Ala617, Lys619, Leu671, Pro672, Phe673, Met674, Asp678, Arg727, Asn728,
Met730, and Asp741 in MERTK. There are also two important substitutions reported:
Ile650Ala in TYRO3 and Ile650Met in AXL [115]. It has been shown that Ile650Met intro-
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duced in MERTK results in the formation of a mimic AXL active site, whereas substitution
Ile650Ala does not mimic the TYRO3 catalytic site due to larger structural differences in the
TYRO3 catalytic pocket, where Ile650A forms a unique subpocket near the ATP binding
site [115,116]. All of these structural differences mean that bigger inhibitors bind better
to TYRO3, while smaller ones have a lower affinity towards TYRO3, with low selectivity
between MERTK and AXL due to the high similarity of the two domains. This effect is
visible in the IC50 values of different TAM TKIs (Table 1). The computational analysis
supports this notion, as a large inhibitor compound designed for MERTK/AXL presented
a higher affinity towards TYRO3 than the kinases it was targeting [116]. These subtle
differences can be exploited to improve selectivity between TAM family members, as an
overall conserved structure of the kinase domain results in difficulties in creating the potent
and selective inhibitors.

Table 1. TAM family kinase domain inhibitors in cancer therapy.

Inhibitor Status 1 Core Type Inhibitory Parameters References

Bosutinib;
SKI-606; PF5208763;

Bosulif
APPROVED A I

AXL IC50 = 174 nM
MERTK IC50 = 110 nM
TYRO3 IC50 = 61 nM

[117–119]

Gilteritinib;
ASP2215; Xospata APPROVED A I AXL IC50 = 0.73 nM

MERTK IC50 = 5 nM [120]

Vandetanib;
ZD6474; Caprelsa APPROVED A I

AXL IC50 = 250 nM
MERTK IC50 = 1400 nM

TYRO3 IC50 = 93 nM
[119]

Cabozantinib;
XL 184; BMS-907351;

Cabometyx
APPROVED B II AXL IC50 = 7 nM [121]

BGB324;
R428;

Bemcentinib
APPROVED X I AXL IC50 = 14 nM [122]

Crizotinib
PF-02341066; Xalkori APPROVED X I AXL IC50 = 294 nM [123]

Sunitinib;
SU 11248; Sutent APPROVED X I AXL IC50 = 9 nM [124]

TP-0903;
Dubermatinib

CLINICAL
TRIALS

NCT04518345
A I AXL IC50 = 27 nM [125]

BMS777607;
ASLAN002

CLINICAL
TRIALS

NCT01721148
NCT00605618

B II
AXL IC50 = 1.1 nM

MERTK IC50 = 14 nM
TYRO3 IC50 = 4.3 nM

[126]

BPI-9016M

CLINICAL
TRIALS

NCT02929290
NCT02478866

B II AXL IC50 = 9 nM [127]

DS-1205b/c

CLINICAL
TRIALS

NCT03599518
NCT03255083
(TERMINATED)

B II AXL IC50 = 1.3 nM
MERTK IC50 = 63 nM [128]
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Table 1. Cont.

Inhibitor Status 1 Core Type Inhibitory Parameters References

Foretinib;
XL880;

GSK1363089

CLINICAL
TRIALS

NCT00920192
NCT01147484
NCT01138384
NCT00742131
NCT00725764
NCT00726323
NCT00725712
NCT00743067
NCT01068587

B II AXL IC50 = 11 nM [129]

Merestinib; LY2801653

CLINICAL
TRIALS

NCT03125239
NCT03027284
NCT02779738
NCT02745769

B II AXL IC50 = 2 nM
MERTK IC50 = 10 nM [125,130]

MGCD265;
Glesatinib

CLINICAL
TRIALS

NCT02954991
B II n/a

Ningetinib; CT053PTSA

CLINICAL
TRIALS

NCT04577703
NCT03758287

B II AXL IC50 < 1.0 nM [131]

ONO-7475
CLINICAL

TRIALS
NCT03176277

B II
AXL IC50 = 0.7 nM

MERTK IC50 = 1 nM
TYRO3 IC50 = 1.9 nM

[132]

PF-07265807;
ARRY-067; PF-5807

CLINICAL
TRIALS

NCT04458259
B II n/a

RXDX-106;
CEP-40783

CLINICAL
TRIALS

NCT03454243
(TERMI-
NATED)

B II
AXL IC50 = 0.31 nM

MERTK IC50 = 1.89 nM
TYRO3 IC50 = 3.5 nM

[133]

Sitravatinib;
MGCD516

CLINICAL
TRIALS

NCT04123704
NCT03575598
NCT04472650
NCT04772612
NCT04921358
NCT04727996
NCT04800614
NCT04904302
NCT04925986
NCT05176925
NCT05104801
NCT05255276
NCT04887194
NCT04734262
NCT02954991
NCT03606174
NCT04887870

B II AXL IC50 = 1.5 nM
MERTK IC50 = 2 nM [134]
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Table 1. Cont.

Inhibitor Status 1 Core Type Inhibitory Parameters References

XL092

CLINICAL
TRIALS

NCT03845166
NCT05176483

B II AXL IC50 = 3.4 nM
MERTK IC50 = 7.2 nM [135]

Amuvatinib;
MP470

CLINICAL
TRIALS

NCT01357395
NCT00894894
NCT00881166

X I AXL IC50 = 10 nM [57]

MRX-2843;
UNC2371

CLINICAL
TRIALS

NCT03510104
NCT04762199
NCT04872478

X I
AXL IC50 = 15 nM

MERTK IC50 = 1.3 nM
TYRO3 IC50 = 17 nM

[136]

S49076
CLINICAL

TRIALS
ISRCTN11619481

X I AXL IC50 = 7 nM
MERTK IC50 = 2 nM [137]

SNS314
CLINICAL

TRIALS
NCT00519662

X I AXL IC50 = 84 nM [138]

Rebastinib;
DCC-2036

CLINICAL
TRIALS

NCT00827138
X II AXL IC50 = 42 nM [139]

SLC-391

CLINICAL
TRIALS

NCT05278845
NCT03990454

X n/a
AXL IC50 = 9.6 nM

MERTK IC50 = 42.3 nM
TYRO3 IC50 = 44 nM

[140]

INCB081776
CLINICAL

TRIALS
NCT03522142

n/a n/a
AXL IC50 = 0.61 nM

MERTK IC50 = 3.17 nM
TYRO3 IC50 = 101 nM

[141]

Q702
CLINICAL

TRIALS
NCT04648254

n/a n/a n/a

SGI7079 PRECLINICAL A I AXL IC50 = 58 nM [142]

SK-G-801;
G-801 PRECLINICAL A I AXL IC50 = 20 nM [143]

6g; purine analogue of
BMS777607 PRECLINICAL B II

AXL IC50 = 39 nM
MERTK IC50 = 42 nM
TYRO3 IC50 = 65 nM

[144]

LDC1267 PRECLINICAL B II
AXL IC50 = 29 nM

MERTK IC50 = 5 nM
TYRO3 IC50 = 8 nM

[47]

NPS-1034 PRECLINICAL B II AXL IC50 = 10.3 nM [145]

TAM-IN-2 PRECLINICAL B II n/a

UNC2541 PRECLINICAL B II MERTK IC50 = 4.4 nM [146]

UNC2881 PRECLINICAL B II
AXL IC50 = 360 nM

MERTK IC50 = 4.3 nM
TYRO3 IC50 = 250 nM

[147]
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Table 1. Cont.

Inhibitor Status 1 Core Type Inhibitory Parameters References

2-D08 PRECLINICAL X I AXL IC50 = 0.49 nM [148]

UNC1062 PRECLINICAL X I
AXL IC50 = 85 nM

MERTK IC50 = 1.1 nM
TYRO3 IC50 = 60 nM

[23,149]

UNC2025 PRECLINICAL X I
AXL IC50 = 14 nM

MERTK IC50 = 0.7 nM
TYRO3 IC50 = 18 nM

[150]

Compound 19 PRECLINICAL X n/a TYRO3 IC50 = 10 nM [151]

Abbreviations: n/a, not available; IC50, half-maximal inhibitory concentration. 1 The table lists NCT/ISRCTN
clinical trials numbers only for completed or recruiting trials. For RXDX-106, the NCT number is given for
terminated study (sponsor’s decision) as it was the only clinical trial for this compound.

Typically, the kinase domain consists of a β-strand N-lobe, and an α-helical C-lobe
connected with a hinge. Kinase domain (KD) activity is regulated by the conformational
state of the aspartate–phenylalanine–glycine (DFG) motif in the hinge region. In its in-
active state, also called DFG-out, phenylalanine disrupts the orientation of the aspartate,
effectively inhibiting Mg2+ binding and sterically blocking the ATP binding site. Upon
activation, a trans-autophosphorylation of tyrosine residues occurs with conformational
changes leading to the reorientation of phenylalanine and positioning of aspartate for two
magnesium ions coordination, opening the hinge into a DFG-in state [152]. This mechanism
is exploited in small-molecule inhibitor design, as well as an amphiphilic environment of
the kinase domain active site, with polar and nonpolar residue clusters within the pocket.
The highly conserved kinase structure of the kinase domain makes it difficult to design
and develop new small-molecule inhibitors that are both highly selective and potent [115].
Nevertheless, properly implemented drug design can use this specific topography to create
an intricate network of interactions to design specific inhibitors, which is crucial in the
development of inhibitors for so closely related proteins as TAM family RTKs.

As growing information is gathered on kinase domain structure and its conformational
states, several strategies for KD inhibition have been proposed. Currently, there are six
different classes of inhibitors, representing different approaches to kinase domain inhibition.
Type I inhibitors interact with the ATP-binding site in the active DFG motif (DFG-in) state
competitively with ATP. Type II inhibitors occupy the same area, but in a DFG-out state,
keeping the kinase domain inactive [116]. Type I/II inhibitors are the most advanced TKIs
in development, but are limited by highly conserved KD structure, which often results in
the low selectivity and high toxicity of these inhibitors. Both classes are also susceptible
to acquired drug resistance through mutations affecting the gatekeeper residues. New-
generation type II inhibitors are designed to penetrate an allosteric pocket to overcome
drug resistance [152]. Type III inhibitors target specific allosteric sites within the catalytic
site, while type IV inhibitors target other allosteric sites. Type III/IV inhibitors are highly
selective, as they target specific regulatory sites of enzymes, e.g., phosphorylation sites [153].
Type V inhibitors use protein scaffolds for bivalent binding of KDs’ active sites and other
important sites, like the structural motifs or regulatory sites. Type V inhibitors are potent
tools in research, but their applications in cancer treatment are limited by the large size
of protein scaffolds, which restrict their availability to RTKs’ intracellular KD domains.
Type VI inhibitors target active kinase sites and bonds in a covalent way. Different and
stable binding lead to high potency and reduced toxicity in comparison to type I and II
inhibitors [154,155]. Type VI inhibitors are also more resistant to acquired drug resistance
via gatekeeping mutations within ATP-binding sites [155].

In the case of the TAM family, the TKIs of type I and type II are the most prominent
and well-studied [156]. These compounds can be aggregated in two distinct structural
groups with similar cores, and some non-conventional compounds. First, the CORE-A
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group consists of smaller compounds, with a hydrogen bond acceptor–substituted phenyl
group linked to a hinge-binding heterocycle with a solubilising group (Figure 2). These
compounds (SGI7079, bosutinib, gilteritinib, dubermatinib, vandetanib) are all type I
inhibitors and were often designed primarily for AXL and present high inhibition of AXL
in the low-nM range, with similar inhibition levels of MERTK (Table 1). CORE-A inhibitors
are very successful, with three of these compounds (gilteritinib, bosutinib, and vandetanib)
developed beyond the preclinical stage with successful clinical trials, and are now approved
for treatment in different types of cancer [157].
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called bypass signalling [77,78]. For example, AXL can cause resistance to MERTK and 
MERTK can cause resistance to AXL [160]. Given this consideration, in some cases, the 
simultaneous targeting of both of these kinases may be more effective than the selective 
inhibition of either kinase. McDaniel et al. showed that the expression of MERTK kinase 
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Figure 2. Different structures of TAM family kinase inhibitors. TAM receptors are divided into three
groups, based on their base core structure: CORE-A compounds, with hydrogen bond acceptor–
substituted phenyl group linked to a hinge-binding heterocycle with a solubilising group; CORE-B
compounds, with heterocycle (hinge-binding) optionally ortho-fluoro phenyl group (binding DFG
motif), 2–4 hydrogen donors/acceptors, and a phenyl group (or para-fluoro phenyl) (binding to
allosteric hydrophobic pockets); and CORE-X compounds, that cannot be clearly assigned to either
-A, or -B groups, as they present only partial structural similarity to other cores, or present completely
different lead structures. Compounds approved for treatment are presented in bold, compounds
currently in clinical trials are presented in italics, and compounds that did not enter the clinical phase
are presented in plain text.

The second group of compounds, i.e., CORE-B, presents a more complex struc-
ture: heterocycle (hinge-binding) optionally ortho-fluoro phenyl group (DFG-binding),
2–4 hydrogen donors/acceptors, and a phenyl group (or para-fluoro phenyl) that binds
to allosteric hydrophobic pockets (Figure 2). This scheme is prominent among type II
inhibitors, as these compounds are generally bigger and cannot properly dock ATP-binding
sites in a DFG-in state [158,159]. This class is developing rapidly, with several compounds
in various clinical trial phases (BMS777607, DS-1205c, foretinib, MGCD265, merestinib,
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ONO-7475, PF-07265807, sitravatinib) and one, cabozantinib, approved for treatment. Sev-
eral more compounds are yet to be tested for efficacy in clinical trials (Table 1).

As more TAM TKIs are developed, new compounds are introduced, presenting
partial structural similarity to previously described cores, -A and -B (rebastinib, amu-
vatinib, SNS314), or present completely different lead structures (crizotinib, sunitinib,
S49076, UN1062, UNC2025). Those compounds are mostly type I inhibitors, the excep-
tion being type II rebastinib. These unique cores open new ways for the rational de-
sign of TKIs [158,159], as most successful compounds here were designed for different
kinases (e.g., crizotinib for ALK/c-Met/ROS1, foretinib for MET/VEGFRs and suntinib for
VEGFR2/PDGFRs), but their robust cores are potent against other receptor kinases, TAMs
included (Figure 2).

5. Battles for the Future
5.1. Selectivity of TAM Family Inhibitors

As discussed above, a rational approach to developing selective inhibitors within
the TAM family is challenging, due to the high structural homology around the active
catalytic site. In particular, AXL and MERTK are similar—their ATP-binding site is smaller
compared to the more open TYRO3 pocket [115]. Consequently, it is easier to obtain dual
AXL/MERTK inhibitors that show selectivity over TYRO3 [115]. When acting on more than
one target, there should always be broad consideration of what this might entail—what the
concerns might be versus the potential benefits.

Importantly, targeting closely related kinases may involve resistance caused by so-
called bypass signalling [77,78]. For example, AXL can cause resistance to MERTK and
MERTK can cause resistance to AXL [160]. Given this consideration, in some cases, the
simultaneous targeting of both of these kinases may be more effective than the selective
inhibition of either kinase. McDaniel et al. showed that the expression of MERTK kinase
is increased after treatment with AXL inhibitors in cancer cell lines and patient-derived
xenografts [160]. MERTK inhibition resulted in increased sensitivity of head and neck squa-
mous cell carcinoma (HNSCC), triple-negative breast cancer (TNBC), and non-small-cell
lung carcinoma (NSCLC) cell lines to AXL inhibition. When both kinases, AXL and MER,
were targeted, it caused more robust inhibition of downstream signalling and impaired
tumour cell expansion in vitro, as well as reduced tumour growth in vivo [160].

In NSCLC, AXL and MER may have overlapping and complementary roles; further-
more, their role in resistance to therapies and co-occurrence in the tumour microenviron-
ment may outweigh the benefits that the development of such a concept may bring [17].
The inhibition of more than one kinase from the TAM family may be beneficial in some
aspects, as described above, but on the other hand, it may also result in increased adverse
effects, i.e., inflammation. AXL is often overexpressed in TNBC with a mesenchymal
phenotype and in some colon cancer subtypes [161–163]. In contrast, MERTK kinase seems
to be more abundantly expressed in acute lymphoblastic leukaemias, therefore a selective
MERTK inhibition could be an interesting therapeutic strategy in this context [164–167].

5.2. Combination Therapy

Combination therapies are implemented in cancer treatment for several reasons. First,
they increase the effectiveness of the therapy and improve treatment outcomes, particularly
when synergistic anticancer effects are achieved. Second, reduced emerging resistance to
therapy is observed, which is a key and limiting problem. Studies are being conducted
on combining therapies targeting TAM receptors and classical therapies such as radio- or
chemotherapy, as well as targeted therapies and immune-checkpoint inhibitors. There is
a growing body of knowledge linking TAM kinases to resistance to chemotherapy and
radiotherapy in both solid and hematologic malignancies [168,169]. Moreover, in the case
of therapies targeting, e.g., EGFR in NSCLC, TAM receptors are known to mediate bypass
signalling, resulting in resistance to EGFR inhibitors such as erlotinib, gefitinib, and osimer-
tinib [36,170–172]. Moreover, kinases of this family, through their physiological functions
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in the immune system, can also modulate resistance [50,173,174]. Several TAM inhibitors
that are still in development, besides their direct antitumour activity, are known for their
immunomodulatory effects on the tumour microenvironment and enhancement of the
antitumour immunity [133,141]. Therefore, there are ongoing clinical trials combining TAM
TKIs and immune checkpoint inhibitors such as pembrolizumab and nivolumab [175–178].
Combining TAM-targeted inhibitors with classical, targeted, or immunotherapies seems
reasonable to obtain more effective anticancer treatment strategies.

5.3. Biomarkers

Despite the frequent overexpression of TAM proteins in cancer, genetic mutations or
gene amplification are rare [77,179]. Due to the lack of confirmed activating mutations
or amplifications that could be a suitable biomarker of therapeutic response, extensive
work is being done to find robust biomarkers. Finding the appropriate biomarkers is
one of the challenges in developing therapies targeting TAM kinases that could lead to
clinically successful treatment strategies. Other options include the expression of the TAM
family proteins, their phosphorylation and activation status. Moreover, the level of ligands
(GAS6 in particular) and soluble forms of the receptors are taken into account as potential
biomarkers [179,180]. What is more, it may be a challenge to find a universal biomarker for
different cancer types, which is related to tissue-dependent signalling and ligand levels
in specific cancer types [95,181]. Currently, in the ongoing clinical trials, i.a., AXL protein
levels and AXL phosphorylation status are being analysed [182].

5.4. Potential Concerns

The development of anticancer therapy targeting TAM family receptors requires
the consideration of their expression and function in the normal cells of the body. It is
worth mentioning that MERTK and AXL kinases are expressed in immune cells such as
macrophages, NK cells, and dendritic cells [47,64,183]. Studies of single, double, and triple
knockouts of TAM receptors in mice have demonstrated, e.g., inflammation and autoim-
munity, with more severe dysfunctions when targeting more than one kinase [39,43,44].
Moreover, as mentioned above, in the case of less selective TAM inhibitors, structurally-
related receptors may also be inhibited, leading to increased off-targets and toxicities. TAM
receptors promote tissue-specific macrophage polarisation into a pro-tumour M2-like phe-
notype as AXL and TYRO3 regulate phagocytosis in dendritic cells, whereas MERTK do so
in the thymus and retina [64,156,184]. Retinal toxicity is observed under MERTK inhibition
and is one of the main concerns in the development of TAM inhibitors [185,186]

As other reports suggest, the activity and downstream signalling of TAM receptors is
also regulated by homodimerisation, and this intricate web of interactions and relations
makes it difficult to create an inhibitor that is selective, effective, and does not deregulate
other signalling pathways [64]. On the other hand, in the case of single-agent anticancer
therapy, the emergence of resistance is a well-known and inevitable phenomenon. Upon
AXL inhibition, MERTK is upregulated in several cancer models and constitutes one of
many mechanisms of drug resistance build-up [160]. So far, mechanisms of resistance to
TAM-targeted therapies have not been extensively studied, besides the abovementioned
preclinical evaluation of MERTK and AXL’s mutual impact on resistance.

6. Future Directions

In summarising the emerging data and collected information, it is becoming clear
that the further development of therapies targeting TAM kinases is necessary. It is worth
emphasising that small molecular inhibitors are effective, but often highly toxic. On the
other hand, antibodies are much more selective and less toxic, but so far do not show
as strong a therapeutic effect as small molecular inhibitors. For the further development
of TAM-targeted therapies, it would be crucial to find biomarkers stratifying patients to
predict which of them may present the greatest therapeutic response. As the effect of
targeting TAM kinases, especially AXL and MERTK, is known to increase the effectiveness
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of other therapies such as chemotherapy, immunotherapy, radiotherapy, and targeted
therapies, it is crucial to gather the most in-depth data on the possible and most promising
clinical combinations. In addition, further studies should be also implemented to reveal
potential toxicities, relevant clinical regimens, therapeutic strategies, and possible bypass
mechanisms and drug resistance.

7. Conclusions

In this review, we provide a comprehensive picture of the current status of the TAM
receptor inhibition strategies in solid tumour therapy. We present how structural differences
between TAM receptors can be exploited to inhibit their activity, with antibodies in various
formats, antibody–drug conjugates, protein decoys, and small compounds targeting their
extracellular domains and on the other side, the wide array of tyrosine kinase inhibitors
directly blocking signal transduction via the intracellular kinase domains.

The great complexity of TAM receptors’ activation mechanisms and their involve-
ment in carcinogenesis make it difficult to develop a drug that is effective, specific, and
safe for patients. Hence, we need to further understand how the different structures of
low-molecular-weight compounds and antibody formats define their properties and char-
acteristics to overcome acquired drug resistance and make these drugs even more potent
in the future. Here, we do not present one approach as better than the other, as we firmly
believe that every way to battle cancer is the right way in this never-ending war on cancer.
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